Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.769
Filtrar
1.
Nat Commun ; 15(1): 3263, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627393

RESUMO

Gouty arthritis evokes joint pain and inflammation. Mechanisms driving gout pain and inflammation remain incompletely understood. Here we show that CXCL5 activates CXCR2 expressed on nociceptive sensory neurons to drive gout pain and inflammation. CXCL5 expression was increased in ankle joints of gout arthritis model mice, whereas CXCR2 showed expression in joint-innervating sensory neurons. CXCL5 activates CXCR2 expressed on nociceptive sensory neurons to trigger TRPA1 activation, resulting in hyperexcitability and pain. Neuronal CXCR2 coordinates with neutrophilic CXCR2 to contribute to CXCL5-induced neutrophil chemotaxis via triggering CGRP- and substance P-mediated vasodilation and plasma extravasation. Neuronal Cxcr2 deletion ameliorates joint pain, neutrophil infiltration and gait impairment in model mice. We confirmed CXCR2 expression in human dorsal root ganglion neurons and CXCL5 level upregulation in serum from male patients with gouty arthritis. Our study demonstrates CXCL5-neuronal CXCR2-TRPA1 axis contributes to gouty arthritis pain, neutrophil influx and inflammation that expands our knowledge of immunomodulation capability of nociceptive sensory neurons.


Assuntos
Artrite Gotosa , Animais , Humanos , Masculino , Camundongos , Artralgia , Quimiocina CXCL5/genética , Quimiocina CXCL5/metabolismo , Inflamação , Nociceptividade , Nociceptores/metabolismo , Dor
2.
Cell ; 187(8): 1874-1888.e14, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38518773

RESUMO

Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Pulmão , Polissacarídeos Bacterianos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Feminino , Masculino , Camundongos , Biofilmes , Escherichia coli/fisiologia , Hipotermia/metabolismo , Hipotermia/patologia , Inflamação/metabolismo , Inflamação/patologia , Pulmão/microbiologia , Pulmão/patologia , Pneumonia/microbiologia , Pneumonia/patologia , Pseudomonas aeruginosa/fisiologia , Células Receptoras Sensoriais , Polissacarídeos Bacterianos/metabolismo , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Nociceptores/metabolismo
3.
Nature ; 628(8008): 604-611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538784

RESUMO

The immune system has a critical role in orchestrating tissue healing. As a result, regenerative strategies that control immune components have proved effective1,2. This is particularly relevant when immune dysregulation that results from conditions such as diabetes or advanced age impairs tissue healing following injury2,3. Nociceptive sensory neurons have a crucial role as immunoregulators and exert both protective and harmful effects depending on the context4-12. However, how neuro-immune interactions affect tissue repair and regeneration following acute injury is unclear. Here we show that ablation of the NaV1.8 nociceptor impairs skin wound repair and muscle regeneration after acute tissue injury. Nociceptor endings grow into injured skin and muscle tissues and signal to immune cells through the neuropeptide calcitonin gene-related peptide (CGRP) during the healing process. CGRP acts via receptor activity-modifying protein 1 (RAMP1) on neutrophils, monocytes and macrophages to inhibit recruitment, accelerate death, enhance efferocytosis and polarize macrophages towards a pro-repair phenotype. The effects of CGRP on neutrophils and macrophages are mediated via thrombospondin-1 release and its subsequent autocrine and/or paracrine effects. In mice without nociceptors and diabetic mice with peripheral neuropathies, delivery of an engineered version of CGRP accelerated wound healing and promoted muscle regeneration. Harnessing neuro-immune interactions has potential to treat non-healing tissues in which dysregulated neuro-immune interactions impair tissue healing.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Macrófagos , Neutrófilos , Nociceptores , Cicatrização , Animais , Camundongos , Comunicação Autócrina , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , 60574 , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Músculo Esquelético , Canal de Sódio Disparado por Voltagem NAV1.8/deficiência , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Nociceptores/metabolismo , Comunicação Parácrina , Doenças do Sistema Nervoso Periférico/complicações , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Regeneração/efeitos dos fármacos , Pele , Trombospondina 1/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/imunologia , Humanos , Masculino , Feminino
4.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38438259

RESUMO

Oxytocinergic transmission blocks nociception at the peripheral, spinal, and supraspinal levels through the oxytocin receptor (OTR). Indeed, a neuronal pathway from the hypothalamic paraventricular nucleus (PVN) to the spinal cord and trigeminal nucleus caudalis (Sp5c) has been described. Hence, although the trigeminocervical complex (TCC), an anatomical area spanning the Sp5c, C1, and C2 regions, plays a role in some pain disorders associated with craniofacial structures (e.g., migraine), the role of oxytocinergic transmission in modulating nociception at this level has been poorly explored. Hence, in vivo electrophysiological recordings of TCC wide dynamic range (WDR) cells sensitive to stimulation of the periorbital or meningeal region were performed in male Wistar rats. PVN electrical stimulation diminished the neuronal firing evoked by periorbital or meningeal electrical stimulation; this inhibition was reversed by OTR antagonists administered locally. Accordingly, neuronal projections (using Fluoro-Ruby) from the PVN to the WDR cells filled with Neurobiotin were observed. Moreover, colocalization between OTR and calcitonin gene-related peptide (CGRP) or OTR and GABA was found near Neurobiotin-filled WDR cells. Retrograde neuronal tracers deposited at the meningeal (True-Blue, TB) and infraorbital nerves (Fluoro-Gold, FG) showed that at the trigeminal ganglion (TG), some cells were immunopositive to both fluorophores, suggesting that some TG cells send projections via the V1 and V2 trigeminal branches. Together, these data may imply that endogenous oxytocinergic transmission inhibits the nociceptive activity of second-order neurons via OTR activation in CGRPergic (primary afferent fibers) and GABAergic cells.


Assuntos
Estimulação Elétrica , Ocitocina , Núcleo Hipotalâmico Paraventricular , Ratos Wistar , Receptores de Ocitocina , Transmissão Sináptica , Animais , Masculino , Núcleo Hipotalâmico Paraventricular/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Ocitocina/metabolismo , Ocitocina/análogos & derivados , Ratos , Receptores de Ocitocina/metabolismo , Receptores de Ocitocina/antagonistas & inibidores , Transmissão Sináptica/fisiologia , Nociceptores/fisiologia , Nociceptores/metabolismo , Nociceptividade/fisiologia , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos dos fármacos , Meninges/fisiologia , Inibição Neural/fisiologia
5.
J Integr Neurosci ; 23(3): 47, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538215

RESUMO

BACKGROUND: Bone cancer pain (BCP) is a common primary or metastatic bone cancer complication. Netrin-1 plays an essential role in neurite elongation and pain sensitization. This study aimed to determine the role of netrin-1 from the metastatic bone microenvironment in BCP development and identify the associated signaling pathway for the strategy of BCP management. METHODS: The rat BCP model was established by intratibial implantation of Walker 256 cells. Von Frey filaments measured the mechanical pain threshold. Movement-induced pain was assessed using limb use scores. Expressions of associated molecules in the affected tibias or dorsal root ganglia (DRG) were measured by immunofluorescence, immunohistochemistry, real-time quantitative polymerase chain reaction, or western blotting. Transduction of deleted in colorectal cancer (DCC) signaling was inhibited by intrathecal injection of DCC-siRNA. RESULTS: In BCP rats, the presence of calcitonin gene-related peptide (CGRP)-positive nerve fibers increased in the metastatic bone lesions. The metastatic site showed enrichment of well-differentiated osteoclasts and expressions of netrin-1 and its attractive receptor DCC. Upregulation of DCC and increased phosphorylation levels of focal adhesion kinase (FAK) and Rac family small GTPase 1/Cell division cycle 42 (Rac1/Cdc42) were found in the DRG. Intrathecal administration of DCC-siRNA led to a significant reduction in FAK and Rac1/Cdc42 phosphorylation levels in the DRG, decreased nociceptive nerve innervation, and improved pain behaviors. CONCLUSIONS: Netrin-1 may contribute to the activation of the BCP by inducing nociceptive nerve innervation and improving pain behaviors.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Netrina-1 , Animais , Ratos , Neoplasias Ósseas/complicações , Dor do Câncer/etiologia , Receptor DCC/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Netrina-1/genética , Nociceptores/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , RNA Interferente Pequeno , Transdução de Sinais , Microambiente Tumoral , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
6.
Cell Rep ; 43(2): 113685, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38261513

RESUMO

Tumor necrosis factor α (TNF-α) is a major pro-inflammatory cytokine, important in many diseases, that sensitizes nociceptors through its action on a variety of ion channels, including voltage-gated sodium (NaV) channels. We show here that TNF-α acutely upregulates sensory neuron excitability and current density of threshold channel NaV1.7. Using electrophysiological recordings and live imaging, we demonstrate that this effect on NaV1.7 is mediated by p38 MAPK and identify serine 110 in the channel's N terminus as the phospho-acceptor site, which triggers NaV1.7 channel insertion into the somatic membrane. We also show that the N terminus of NaV1.7 is sufficient to mediate this effect. Although acute TNF-α treatment increases NaV1.7-carrying vesicle accumulation at axonal endings, we did not observe increased channel insertion into the axonal membrane. These results identify molecular determinants of TNF-α-mediated regulation of NaV1.7 in sensory neurons and demonstrate compartment-specific effects of TNF-α on channel insertion in the neuronal plasma membrane.


Assuntos
Células Receptoras Sensoriais , Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Células Receptoras Sensoriais/metabolismo , Axônios/metabolismo , Nociceptores/metabolismo , Membrana Celular/metabolismo
7.
Neural Dev ; 19(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167468

RESUMO

Prdm12 is an epigenetic regulator expressed in developing and mature nociceptive neurons, playing a key role in their specification during neurogenesis and modulating pain sensation at adulthood. In vitro studies suggested that Prdm12 recruits the methyltransferase G9a through its zinc finger domains to regulate target gene expression, but how Prdm12 interacts with G9a and whether G9a plays a role in Prdm12's functional properties in sensory ganglia remain unknown. Here we report that Prdm12-G9a interaction is likely direct and that it involves the SET domain of G9a. We show that both proteins are largely co-expressed in dorsal root ganglia during early murine development, opening the possibility that G9a plays a role in DRG and may act as a mediator of Prdm12's function in the development of nociceptive sensory neurons. To test this hypothesis, we conditionally inactivated G9a in neural crest using a Wnt1-Cre transgenic mouse line. We found that the specific loss of G9a in the neural crest lineage does not lead to dorsal root ganglia hypoplasia due to the loss of somatic nociceptive neurons nor to the ectopic expression of the visceral determinant Phox2b as observed upon Prdm12 ablation. These findings suggest that Prdm12 function in the initiation of the nociceptive lineage does not critically involves its interaction with G9a.


Assuntos
Neurogênese , Nociceptores , Camundongos , Animais , Nociceptores/metabolismo , Neurogênese/fisiologia , Células Receptoras Sensoriais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Gânglios Espinais , Camundongos Transgênicos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas do Tecido Nervoso/metabolismo
8.
Mol Pain ; 20: 17448069241230419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38246917

RESUMO

In vivo analysis of protein function in nociceptor subpopulations using antisense oligonucleotides and short interfering RNAs is limited by their non-selective cellular uptake. To address the need for selective transfection methods, we covalently linked isolectin B4 (IB4) to streptavidin and analyzed whether it could be used to study protein function in IB4(+)-nociceptors. Rats treated intrathecally with IB4-conjugated streptavidin complexed with biotinylated antisense oligonucleotides for protein kinase C epsilon (PKCε) mRNA were found to have: (a) less PKCε in dorsal root ganglia (DRG), (b) reduced PKCε expression in IB4(+) but not IB4(-) DRG neurons, and (c) fewer transcripts of the PKCε gene in the DRG. This knockdown in PKCε expression in IB4(+) DRG neurons is sufficient to reverse hyperalgesic priming, a rodent model of chronic pain that is dependent on PKCε in IB4(+)-nociceptors. These results establish that IB4-streptavidin can be used to study protein function in a defined subpopulation of nociceptive C-fiber afferents.


Assuntos
Lectinas , Nociceptores , Ratos , Animais , Lectinas/metabolismo , Nociceptores/metabolismo , Estreptavidina/metabolismo , Ratos Sprague-Dawley , Fibras Nervosas Amielínicas/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Gânglios Espinais/metabolismo
9.
Nanoscale ; 16(5): 2419-2431, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38226500

RESUMO

The unique properties of few-layered graphene (FLG) make it interesting for a variety of applications, including biomedical applications, such as tissue engineering and drug delivery. Although different studies focus on applications in the central nervous system, its interaction with the peripheral nervous system has been so far overlooked. Here, we investigated the effects of exposure to colloidal dispersions of FLG on the sensory neurons of the rat dorsal root ganglia (DRG). We found that the FLG flakes were actively internalized by sensory neurons, accumulated in large intracellular vesicles, and possibly degraded over time, without major toxicological concerns, as neuronal viability, morphology, protein content, and basic electrical properties of DRG neurons were preserved. Interestingly, in our electrophysiological investigation under noxious stimuli, we observed an increased functional response upon FLG treatment of the nociceptive subpopulation of DRG neurons in response to irritants specific for chemoreceptors TRPV1 and TRPA1. The observed effects of FLG on DRG neurons may open-up novel opportunities for applications of these materials in specific disease models.


Assuntos
Grafite , Nociceptores , Ratos , Animais , Nociceptores/metabolismo , Irritantes/metabolismo , Irritantes/farmacologia , Grafite/farmacologia , Grafite/metabolismo , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/farmacologia , Gânglios Espinais/metabolismo
10.
Pain ; 165(1): 202-215, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703419

RESUMO

ABSTRACT: Bradykinin is a peptide implicated in inflammatory pain in both humans and rodents. In rodent sensory neurons, activation of B1 and B2 bradykinin receptors induces neuronal hyperexcitability. Recent evidence suggests that human and rodent dorsal root ganglia (DRG), which contain the cell bodies of sensory neurons, differ in the expression and function of key GPCRs and ion channels; whether bradykinin receptor expression and function are conserved across species has not been studied in depth. In this study, we used human DRG tissue from organ donors to provide a detailed characterization of bradykinin receptor expression and bradykinin-induced changes in the excitability of human sensory neurons. We found that B2 and, to a lesser extent, B1 receptors are expressed by human DRG neurons and satellite glial cells. B2 receptors were enriched in the nociceptor subpopulation. Using patch-clamp electrophysiology, we found that acute bradykinin increases the excitability of human sensory neurons, whereas prolonged exposure to bradykinin decreases neuronal excitability in a subpopulation of human DRG neurons. Finally, our analyses suggest that donor's history of chronic pain and age may be predictors of higher B1 receptor expression in human DRG neurons. Together, these results indicate that acute bradykinin-induced hyperexcitability, first identified in rodents, is conserved in humans and provide further evidence supporting bradykinin signaling as a potential therapeutic target for treating pain in humans.


Assuntos
Bradicinina , Receptores da Bradicinina , Humanos , Bradicinina/metabolismo , Gânglios Espinais/metabolismo , Nociceptores/metabolismo , Dor , Receptores da Bradicinina/metabolismo , Células Receptoras Sensoriais/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(52): e2306090120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38117854

RESUMO

The sigma 2 receptor (σ2R) was described pharmacologically more than three decades ago, but its molecular identity remained obscure until recently when it was identified as transmembrane protein 97 (TMEM97). We and others have shown that σ2R/TMEM97 ligands alleviate mechanical hypersensitivity in mouse neuropathic pain models with a time course wherein maximal antinociceptive effect is approximately 24 h following dosing. We sought to understand this unique antineuropathic pain effect by addressing two key questions: do these σ2R/TMEM97 compounds act selectively via the receptor, and what is their downstream mechanism on nociceptive neurons? Using male and female conventional knockout mice for Tmem97, we find that a σ2R/TMEM97 binding compound, FEM-1689, requires the presence of the gene to produce antinociception in the spared nerve injury model in mice. Using primary mouse dorsal root ganglion neurons, we demonstrate that FEM-1689 inhibits the integrated stress response (ISR) and promotes neurite outgrowth via a σ2R/TMEM97-specific action. We extend the clinical translational value of these findings by showing that FEM-1689 reduces ISR and p-eIF2α levels in human sensory neurons and that it alleviates the pathogenic engagement of ISR by methylglyoxal. We also demonstrate that σ2R/TMEM97 is expressed in human nociceptors and satellite glial cells. These results validate σ2R/TMEM97 as a promising target for further development for the treatment of neuropathic pain.


Assuntos
Neuralgia , Masculino , Feminino , Humanos , Camundongos , Animais , Ligantes , Neuralgia/metabolismo , Nociceptores/metabolismo , Células Receptoras Sensoriais/metabolismo , Camundongos Knockout , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
12.
Sci Adv ; 9(44): eadh9603, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922363

RESUMO

Activation of the mechanistic target of rapamycin complex 1 (mTORC1) contributes to the development of chronic pain. However, the specific mechanisms by which mTORC1 causes hypersensitivity remain elusive. The eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) is a key mTORC1 downstream effector that represses translation initiation. Here, we show that nociceptor-specific deletion of 4E-BP1, mimicking activation of mTORC1-dependent translation, is sufficient to cause mechanical hypersensitivity. Using translating ribosome affinity purification in nociceptors lacking 4E-BP1, we identified a pronounced translational up-regulation of tripartite motif-containing protein 32 (TRIM32), an E3 ubiquitin ligase that promotes interferon signaling. Down-regulation of TRIM32 in nociceptors or blocking type I interferon signaling reversed the mechanical hypersensitivity in mice lacking 4E-BP1. Furthermore, nociceptor-specific ablation of TRIM32 alleviated mechanical hypersensitivity caused by tissue inflammation. These results show that mTORC1 in nociceptors promotes hypersensitivity via 4E-BP1-dependent up-regulation of TRIM32/interferon signaling and identify TRIM32 as a therapeutic target in inflammatory pain.


Assuntos
Interferon Tipo I , Nociceptores , Camundongos , Animais , Nociceptores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fosfoproteínas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Interferon Tipo I/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Mol Pain ; 19: 17448069231204191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37710969

RESUMO

Benzydamine is an active pharmaceutical compound used in the oral care pharmaceutical preparation as NSAID. Beside from its anti-inflammatory action, benzydamine local application effectively reliefs pain showing analgesic and anaesthetic properties. Benzydamine mechanism of action has been characterized on inflammatory cell types and mediators highlighting its capacity to inhibit pro-inflammatory mediators' synthesis and release. On the other hand, the role of benzydamine as neuronal excitability modulator has not yet fully explored. Thus, we studied benzydamine's effect over primary cultured DRG nociceptors excitability and after acute and chronic inflammatory sensitization, as a model to evaluate relative nociceptive response. Benzydamine demonstrated to effectively inhibit neuronal basal excitability reducing its firing frequency and increasing rheobase and afterhyperpolarization amplitude. Its effect was time and dose-dependent. At higher doses, benzydamine induced changes in action potential wavelength, decreasing its height and slightly increasing its duration. Moreover, the compound reduced neuronal acute and chronic inflammatory sensitization. It inhibited neuronal excitability mediated either by an inflammatory cocktail, acidic pH or high external KCl. Notably, higher potency was evidenced under inflammatory sensitized conditions. This effect could be explained either by modulation of inflammatory and/or neuronal sensitizing signalling cascades or by direct modulation of proalgesic and action potential firing initiating ion channels. Apparently, the compound inhibited Nav1.8 channel but had no effect over Kv7.2, Kv7.3, TRPV1 and TRPA1. In conclusion, the obtained results strengthen the analgesic and anti-inflammatory effect of benzydamine, highlighting its mode of action on local pain and inflammatory signalling.


Assuntos
Benzidamina , Humanos , Benzidamina/metabolismo , Benzidamina/farmacologia , Benzidamina/uso terapêutico , Dor/tratamento farmacológico , Dor/metabolismo , Nociceptores/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/uso terapêutico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos/metabolismo
14.
Stem Cell Res ; 72: 103202, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37708613

RESUMO

The transient receptor potential vanilloid subfamily 1 (TRPV1) is a polymodal nociceptor that is highly expressed in sensory nerves. Activation of TRPV1 receptors excites primary afferent nociceptors by opening cation channels, allowing the influx of Na+ and Ca2+ ions into the cytoplasm. Here, a TRPV1 knockout human embryonic stem cell line was generated using the CRISPR/Cas9 genome-editing technology to further study the function of TRPV1. The cell line confirmed with normal pluripotency and karyotype.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Pluripotentes , Humanos , Sistemas CRISPR-Cas/genética , Nociceptores/metabolismo , Linhagem Celular , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo
15.
J Comp Neurol ; 531(14): 1425-1442, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37537886

RESUMO

Primary sensory dorsal root ganglia (DRG) neurons are diverse, with distinct populations that respond to specific stimuli. Previously, we observed that functionally distinct populations of DRG neurons express mRNA transcript variants with different 3' untranslated regions (3'UTRs). 3'UTRs harbor binding sites for interaction with RNA-binding proteins (RBPs) for transporting mRNAs to subcellular domains, modulating transcript stability, and regulating the rate of translation. In the current study, analysis of publicly available single-cell RNA-sequencing data generated from adult mice revealed that 17 3'UTR-binding RBPs were enriched in specific populations of DRG neurons. This included four members of the CUG triplet repeat (CUGBP) Elav-like family (CELF): CELF2 and CELF4 were enriched in peptidergic, CELF6 in both peptidergic and nonpeptidergic, and CELF3 in tyrosine hydroxylase-expressing neurons. Immunofluorescence studies confirmed that 60% of CELF4+ neurons are small-diameter C fibers and 33% medium-diameter myelinated (likely Aδ) fibers and showed that CELF4 is distributed to peripheral termini. Coexpression analyses using transcriptomic data and immunofluorescence revealed that CELF4 is enriched in nociceptive neurons that express GFRA3, CGRP, and the capsaicin receptor TRPV1. Reanalysis of published transcriptomic data from macaque DRG revealed a highly similar distribution of CELF members, and reanalysis of single-nucleus RNA-sequencing data derived from mouse and rat DRG after sciatic injury revealed differential expression of CELFs in specific populations of sensory neurons. We propose that CELF RBPs may regulate the fate of mRNAs in populations of nociceptors, and may play a role in pain and/or neuronal regeneration following nerve injury.


Assuntos
Nociceptores , Células Receptoras Sensoriais , Ratos , Camundongos , Animais , Regiões 3' não Traduzidas , Nociceptores/metabolismo , Células Receptoras Sensoriais/metabolismo , Dor/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Gânglios Espinais/metabolismo
16.
Neurochem Res ; 48(11): 3296-3315, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37493882

RESUMO

Hot peppers, also called chilli, chilli pepper, or paprika of the plant genus Capsicum (family Solanaceae), are one of the most used vegetables and spices worldwide. Capsaicin (8-methyl N-vanillyl-6-noneamide) is the main pungent principle of hot green and red peppers. By acting on the capsaicin receptor or transient receptor potential cation channel vanilloid subfamily member 1 (TRPV1), capsaicin selectively stimulates and in high doses defunctionalizes capsaicin-sensitive chemonociceptors with C and Aδ afferent fibers. This channel, which is involved in a wide range of neuronal processes, is expressed in peripheral and central branches of capsaicin-sensitive nociceptive neurons, sensory ganglia, the spinal cord, and different brain regions in neuronal cell bodies, dendrites, astrocytes, and pericytes. Several experimental and clinical studies provided evidence that capsaicin protected against ischaemic or excitotoxic cerebral neuronal injury and may lower the risk of cerebral stroke. By preventing neuronal death, memory impairment and inhibiting the amyloidogenic process, capsaicin may also be beneficial in neurodegenerative disorders such as Parkinson's or Alzheimer's diseases. Capsaicin given in systemic inflammation/sepsis exerted beneficial antioxidant and anti-inflammatory effects while defunctionalization of capsaicin-sensitive vagal afferents has been demonstrated to increase brain oxidative stress. Capsaicin may act in the periphery via the vagal sensory fibers expressing TRPV1 receptors to reduce immune oxidative and inflammatory signalling to the brain. Capsaicin given in small doses has also been reported to inhibit the experimentally-induced epileptic seizures. The aim of this review is to provide a concise account on the most recent findings related to this topic. We attempted to delineate such mechanisms by which capsaicin exerts its neuronal protective effects. We also aimed to provide the reader with the current knowledge on the mechanism of action of capsaicin on sensory receptors.


Assuntos
Capsaicina , Canais de Cátion TRPV , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Canais de Cátion TRPV/metabolismo , Neuroproteção , Nociceptores/metabolismo , Medula Espinal/metabolismo , Hormônios Esteroides Gonadais
17.
PLoS One ; 18(7): e0288356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440542

RESUMO

Patients with systemic lupus erythematosus (SLE) often suffer from chronic pain. Little is known about the peripheral mechanisms underlying the genesis of chronic pain induced by SLE. The aim of this study was to investigate whether and how membrane properties in nociceptive neurons in the dorsal root ganglions (DRGs) are altered by SLE. We found elevation of resting membrane potentials, smaller capacitances, lower action potential thresholds and rheobases in nociceptive neurons in the DRGs from MRL/lpr mice (an SLE mouse model) with thermal hyperalgesia. DRGs from MRL/lpr mice had increased protein expressions in TNFα, IL-1ß, and phosphorylated ERK but suppressed AMPK activity, and no changes in sodium channel 1.7 protein expression. We showed that intraplantar injection of Compound C (an AMPK inhibitor) induced thermal hyperalgesia in normal mice while intraplantar injection of AICAR (an AMPK activator) reduced thermal hyperalgesia in MRL/Lpr mice. Upon inhibition of AMPK membrane properties in nociceptive neurons from normal control mice could be rapidly switched to those found in SLE mice with thermal hyperalgesia. Our study indicates that increased excitability in peripheral nociceptive sensory neurons contributes to the genesis of thermal hyperalgesia in mice with SLE, and AMPK regulates membrane properties in nociceptive sensory neurons as well as thermal hyperalgesia in mice with SLE. Our study provides a basis for targeting signaling pathways regulating membrane properties of peripheral nociceptive neurons as a means for conquering chronic pain caused by SLE.


Assuntos
Dor Crônica , Lúpus Eritematoso Sistêmico , Camundongos , Animais , Hiperalgesia/metabolismo , Nociceptores/metabolismo , Dor Crônica/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Nociceptividade , Camundongos Endogâmicos MRL lpr , Células Receptoras Sensoriais/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo
18.
Keio J Med ; 72(3): 77-87, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37460327

RESUMO

The sensory and immune systems have been studied independently for a long time, whereas the interaction between the two has received little attention. We have carried out research to understand the interaction between the sensory and immune systems and have found that inflammation and bone destruction caused by fungal infection are suppressed by nociceptors. Furthermore, we have elucidated the molecular mechanism whereby fungal receptors are expressed on nociceptors and skin epithelium, how they cooperate to generate fungal pain, and how colitis and bone metabolism are regulated by mechanosensors expressed on the gut epithelium. Recently, we found that nociceptors prevent septic death by inhibiting microglia via nociceptor-derived hormones. This review summarizes our current state of knowledge on pain biology and outlines the mechanisms whereby pain and immunity interact. Our findings indicate that the sensory and immune systems share a variety of molecules and interact with each other to regulate our pathological and homeostatic conditions. This prompted us to advocate the interdisciplinary science named "senso-immunology," and this emerging field is expected to generate new ideas in both physiology and immunology, leading to the development of novel drugs to treat pain and inflammation.


Assuntos
Nociceptores , Dor , Humanos , Dor/metabolismo , Nociceptores/metabolismo , Sistema Imunitário/metabolismo , Inflamação/metabolismo , Pele/metabolismo
19.
Osteoarthritis Cartilage ; 31(10): 1342-1352, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37353141

RESUMO

OBJECTIVE: There have been significant developments in understanding artemin/GFRα3 signaling in recent years, and there is now accumulating evidence that artemin has important roles to play in pain signaling, including that derived from joint and bone, and that associated with osteorthritis (OA). METHODS: A total of 163 Sprague-Dawley rats were used in this study. We used an animal model of mono-iodoacetate (MIA)-induced OA, in combination with electrophysiology, behavioral testing, Western blot analysis, and retrograde tracing and immunohistochemistry, to identify roles for artemin/GFRα3 signaling in the pathogenesis of OA pain. RESULTS: We have found that: 1) GFRα3 is expressed in a substantial proportion of knee joint afferent neurons; 2) exogenous artemin sensitizes knee joint afferent neurons in naïve rats; 3) artemin is expressed in articular tissues of the joint, but not surrounding bone, early in MIA-induced OA; 4) artemin expression increases in bone later in MIA-induced OA when pathology involves subchondral bone; and 5) sequestration of artemin reverses MIA-induced sensitization of both knee joint and bone afferent neurons late in disease when there is inflammation of knee joint tissues and damage to the subchondral bone. CONCLUSIONS: Our findings show that artemin/GFRα3 signaling has a role to play in the pathogenesis of OA pain, through effects on both knee joint and bone afferent neurons, and suggest that targeted manipulation of artemin/GFRα3 signaling may provide therapeutic benefit for the management of OA pain. DATA AVAILABILITY: Data are available on request of the corresponding author.


Assuntos
Nociceptores , Dor , Ratos , Animais , Nociceptores/metabolismo , Ratos Sprague-Dawley , Dor/etiologia , Dor/metabolismo , Neurônios Aferentes , Inflamação/metabolismo , Modelos Animais de Doenças
20.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175602

RESUMO

Migraine is a neurovascular disorder that affects approximately 12% of the global population. While its exact causes are still being studied, researchers believe that nociceptive neurons in the trigeminal ganglia play a key role in the pain signals of migraine. These nociceptive neurons innervate the intracranial meninges and convey pain signals from the meninges to the thalamus. Targeting nociceptive neurons is considered promising due to their accessibility and distinct molecular profile, which includes the expression of several transient receptor potential (TRP) channels. These channels have been linked to various pain conditions, including migraine. This review discusses the role and mechanisms of nociceptive neurons in migraine, the challenges of current anti-migraine drugs, and the evidence for well-studied and emerging TRP channels, particularly TRPC4, as novel targets for migraine prevention and treatment.


Assuntos
Transtornos de Enxaqueca , Canais de Potencial de Receptor Transitório , Humanos , Nociceptores/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Gânglio Trigeminal/metabolismo , Dor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...